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Exact vs. quasi-classical tunneling
times for idealized potentials

Mark R.A. Shegelski, Matthew Reid, and Roman Holenstein

Abstract: We compare the exact tunneling time with the quasi-classical tunneling time for
idealized potentials. We examine three one-dimensional cases where the potential is chosen to
have a simple form. In each case, the exact tunneling time and the quasi-classical time differ
significantly. In one case, the two differ in magnitude by a factor of about ten. In another
case, the two differ not only quantitatively, but qualitatively as well. A discussion is given
as to why the two times are significantly different, and suggestions for further inquiries are
made.

PACS Nos.: 03.65Xp, 03.65-w

Résumé : Nous comparons les temps exact et semi-classique de la transition tunnel pour
certains potentiels modèles. Nous examinons trois potentiels 1-D de forme simple. Dans
tous les cas, le temps exact et le temps semi-classique diffèrent de façon significative. Dans
un cas, ils diffèrent par un ordre de grandeur. Dans un autre cas, les deux diffèrent non
seulement quantitativement, mais aussi qualitativement. Nous cherchons des causes possibles
et suggérons des études additionnelles.

[Traduit par la Rédaction]

1. Introduction

Tunneling phenomena in quantum mechanics have been an active area of research for many years.
Lately, there has been a growing interest in tunneling phenomena [1–5] primarily for two reasons. First,
with increasing technological advancement, quantum-well structures can now be constructed so that
tunneling can be examined experimentally [6]. Secondly, there has been some debate in the literature
over which definition one should use to determine the time it takes for a particle to “tunnel” through
a potential barrier (see, e.g., refs. 1 and 4). This debate arises primarily because there is no operator
associated with time in quantum mechanics. This leads to an ambiguity in defining quantities that have
units of time. More recently, it was shown in ref. 7 that the dwell-time definition for tunneling times, as
defined in the standard or Copenhagen interpretation of quantum mechanics, agrees with the tunneling
time that one would compute in the Bohmian interpretation of quantum mechanics, where it is much
more straightforward and unambiguous to define the tunneling time. As we will see, this is important
because our definition of tunneling times from localized states is very similar to that defined in ref. 7. It
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should be pointed out that the various definitions for tunneling times mentioned above do not hold for
the case of tunneling from a localized state [1]. As interesting as this area of research is, in this paper,
we will be concerned only with tunneling from localized states, and will not consider further the debate
as to the proper definition for tunneling times from nonlocalized states.

In many books on quantum mechanics, the phenomenon of tunneling is discussed, and a formula
is given for estimating the tunneling time (see, e.g., refs. 8–11). We will refer to this formula as the
“quasi-classical” tunneling time, as it relies on quasi-classical concepts.

The basic idea underlying the formula is to think of the particle as making several attempts to tunnel
through the potential barrier, and to use or estimate the probability, P , that the particle will tunnel
through the barrier on a given attempt. Let �tqc denote the time interval between attempts. The average
number < N > of attempts taken for the particle to finally tunnel is just < N >= 1/P . Thus, the
quasi-classical tunneling time, tqc, is given by

tqc = �tqc < N >= 1

P
�tqc (1)

In the quasi-classical formulation, �tqc is estimated by

�tqc = 2R

v
(2)

where R is the width of the well and v is the speed of the particle as it moves inside the well.
One could expect that tqc would not agree with the exact tunneling time, ttun, on the grounds that,

for example, v must change with time as the wave function of the particle develops in time as described
by the Schrödinger equation.

The principal objective of this paper is to calculate the tunneling time exactly for selected idealized
one-dimensional cases and thereby inquire as to the degree of success resulting through the use of
tqc instead. One of the main reasons motivating this investigation is that the quasi-classical formula is
frequently used to calculate the tunneling time, even in cases where, in our view, use of the formula is
questionable. We, therefore, examine three cases, two of which have the potential barrier modeled as a
simple δ-function barrier, the other being a double-square-well potential. We will show that tqc is not
necessarily a reliable means of estimating the tunneling time.

2. Delta-function potential barrier

We will consider how the tunneling time depends upon various parameters for cases where the
potential energy has the ideal form shown in Fig. 1. Here we are dealing with a particle that is placed at
time t = 0 inside the narrow, shallow well (i.e., the particle is initially localized in the range 0 < x < x1).
We ensure that the expectation value < E > of the particle’s total energy is less than the barrier height
V2. We calculate exactly the time taken for the particle to tunnel out of the inner well and into the wide,
deep outer well.

By taking x2 → x+
1 and V2 → ∞, we simplify the double-well problem to that of tunneling

past a δ-function potential barrier. We consider this simpler case in this section, dealing with the full
double-well problem in the next section.

We, therefore, first consider a particle initially localized in the range 0 < x < x1, with a δ-function
potential barrier located at x = x1; we also confine the particle for all time to the range 0 < x < x2.
(Note that we simply rename x3 and refer to it as x2 for the δ-function cases.) We first take the potential
on either side of the barrier to be the same (i.e. we choose V1 = 0). In the second example, we will
have the potential higher inside the barrier (i.e., V1 > 0), so that the problem is more truly a “tunneling
problem”.
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Fig. 1. The potential energy of the double square well with a square potential barrier. The expectation value < E >

of the particle energy is such that V1 < < E > < V2.

Our method for calculating the exact value of the tunneling time is as follows. First we calculate the
eigenfunctions of the Hamiltonian. After choosing an initial state for the particle, we express the time-
dependent wave function in terms of the eigenstates of the Hamiltonian. We then write the expression
for the exact tunneling time in terms of the time-dependent wave function of the particle. At that point
we must make use of a computer. Doing so gives us our desired results.

We thus take the potential to be given by

V (x) =




+∞, for x ≤ 0

V1, for 0 < x < x1

λδ(x − x1), for x = x1

0, for x1 < x < x2

+∞, for x2 ≤ x

(3)

The Schrödinger equation

− �
2

2m

d2ψk(x)

dx2 + V (x)ψk(x) = Ekψk(x) (4)

allows us to determine all the energy eigenfunctions, ψk(x), and the corresponding energy eigenvalues,
E = Ek = �

2k2/(2m), where m is the mass of the particle.

It is straightforward to show that the eigenfunctions have the form

ψk(x) =
{
ψ I
k(x), for E < V1

ψ II
k (x), for E > V1

(5)

©2001 NRC Canada
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ψ I
k(x) =




0, for x ≤ 0

A1 sinh(qx), for 0 < x < x1

B1 sin[k(x − x2)], for x1 < x < x2

0, for x2 ≤ x

(6)

ψ II
k (x) =




0, for x ≤ 0

A2 sin(px), for 0 < x < x1

B2 sin[k(x − x2)], for x1 < x < x2

0, for x2 ≤ x

(7)

where k2 = 2mE/�2, q2 = 2m(V1 − E)/�2, p2 = 2m(E − V1)/�
2.

We solve for the energies E and eigenfunctions ψk by imposing continuity of the eigenfunctions
across the barrier, normalizing, and using the discontinuity of dψk/dx at x = x1[

dψk(x)

dx

]
x+

1

−
[

dψk(x)

dx

]
x−

1

= 2mλ

�2 ψk(x1) (8)

The eigenvalue conditions turn out to be

k cot[k(x2 − x1)] + q coth(qx1) = −2mλ

�2 , for E < V1 (9)

k cot[k(x2 − x1)] + p cot(px1) = −2mλ

�2 , for E > V1 (10)

The coefficients A1, A2, B1, and B2 are found by continuity of the wave function at x = x1, (8)
for the discontinuity of dψk/dx at x = x1, and by normalizing ψk:

∫ +∞
−∞ |ψk(x)|2 dx = 1. After some

straightforward calculation, we obtain

|A1|−2 = (x2 − x1) sinh2(qx1)

2 sin2[k(x2 − x1)]
− x1

2
+ sinh(2qx1)

4q
− sinh2(qx1) cot[k(x2 − x1)]

2k
(11)

|A2|−2 = (x2 − x1) sin2(px1)

2 sin2[k(x2 − x1)]
+ x1

2
− sin(2px1)

4p
− sin2(px1) cot[k(x2 − x1)]

2k
(12)

The problem is simplified by choosing (x2 − x1) → ∞; we get

|A1|2 ≈ 2 sin2[k(x2 − x1)]
(x2 − x1) sinh2(qx1)

(13)

|A2|2 ≈ 2 sin2[k(x2 − x1)]
(x2 − x1) sin2(px1)

(14)

Expressions for B1 and B2 are obtained in a similar manner.
We choose the initial state of the particle to be the state corresponding to the lowest energy if the

potential were to be infinite for x > x1; i.e., in an infinitely deep potential well. The initial state is thus
given by

ψ0(x) ≡ ψ(x, t = 0) =
{√

2
x1

sin
(
πx
x1

)
, for 0 < x < x1

0, elsewhere
(15)
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We can now write the time dependence of this state by exploiting the completeness of the energy
eigenstates. At t = 0 we have

ψ0(x) =
∑
Ek

Ckψk(x) (16)

with

Ck =< ψk|ψ0 >=
{
CI
k =< ψ I

k|ψ0 >, for E < V1

CII
k =< ψ II

k |ψ0 >, for E > V1
(17)

Then the time-dependent wave function is given by

ψ(x, t) =
∑
E

Ck ψk(x) e−iEt/� =
∑
E<V1

CI
k ψ I

k(x) e−iEt/� +
∑
E>V1

CII
k ψ II

k (x) e−iEt/� (18)

The exact tunneling time can now be calculated, because we know the wave functionψ(x, t) exactly.
(Note that CI

k and CII
k are given implicitly below in dimensionless form.) Our only limitation will be

that, ultimately, we will need to make use of a computer, so the “exact” value of the tunneling time can
be determined to the desired number of significant figures. We will see that this poses no problems in
our quest to compare tqc and the exact time ttun.

As discussed in the introduction, there is much debate in the literature over which definition of the
tunneling time from nonlocalized states is the correct one. In ref. 7, it was shown that the dwell-time
definition agreed with that obtained from computing the tunneling time in the Bohmian interpretation
of quantum mechanics, supporting this definition of the tunneling time. We define the tunneling time,
ttun, from a localized state (as is the case for the configurations we deal with throughout this paper) in
a very similar manner to that done in ref. 7

ttun =
∫ ∞

0 tPin(t) dt∫ ∞
0 Pin(t) dt

(19)

where

Pin(t) =
x1∫

0

|ψ(x, t)|2 dx (20)

We will refer to this tunneling time as “the exact tunneling time”.
From the eigenvalue conditions, (9) and (10), one can deduce that the difference �k between

consecutive eigenvalues is, in the limit (x2 − x1) → ∞, �k ≈ π/(x2 − x1). Moreover, in the limit
(x2 − x1) → ∞, one can replace the sum by an integral. Since we will soon need to make use of a
computer to calculate ttun, we convert ψ(x, t) to dimensionless form, as follows:

φ(η, τ ) =



φ1(η, τ ), for 0 < η < 1

φ2(η, τ ), for 1 < η < η1 ≡ x2/x1

0, elsewhere

(21)

φ1(η, τ ) = 2
√

2

κ1∫
0

dκ
κ2 sinh(µ) sinh(µη) e−iκ2τ

(π2 + µ2)
{
κ2 sinh2(µ) + f 2(κ, β)

}

+ 2
√

2

∞∫
κ1

dκ
κ2 sin(ρ) sin(ρη) e−iκ2τ

(π2 − ρ2)
{
κ2 sin2(ρ) + g2(κ, β)

} (22)
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Fig. 2. The quasi-classical tunneling time τqc (continuous-line curve) and the exact tunneling time τtun (broken-line
curve) as a function of the strength β of the δ-function potential for the case υ1 = 0.

φ2(η, τ ) = 2
√

2

κ1∫
0

dκ
κ sinh(µ) {κ sinh(µ) cos[κ(η − 1)] + f (κ, β) sin[κ(η − 1)]} e−iκ2τ

(π2 + µ2)
{
κ2 sinh2(µ) + f 2(κ, β)

}

+ 2
√

2

∞∫
κ1

dκ
κ sin(ρ) {κ sin(ρ) cos[κ(η − 1)] + g(κ, β) sin[κ(η − 1)]} e−iκ2τ

(π2 − ρ2)
{
κ2 sin2(ρ) + g2(κ, β)

} (23)

with

f (κ, β) = β sinh(µ) + µ cosh(µ) (24)

g(κ, β) = β sin(ρ) + ρ cos(ρ) (25)

where we have defined the following dimensionless quantities: φ = √
x1ψ , κ = kx1, µ = qx1,

ρ = px1, κ1 = x1
√

2mV1/�, β = 2mx1λ/�
2, η = x/x1, τ = t/t0, and t0 = 2mx2

1/�.
We should note at this point that our results in (22) and (23) agree with what was done in ref. 12. In

ref. 12, tunneling through a delta-function barrier was examined, where the potential used was identical
to ours if one puts V1 = 0 in (3) of our paper. If we reduce our more general equations, by setting
V1 = 0, we reproduce exactly eq. (1) of ref. 12.

Next we recall the method used to calculate the quasi-classical tunneling time. Typically, one begins
by calculating the probabilities of reflection and of transmission for a particle incident on the barrier
“from the left” and with flux �k/m. One thus calculates the reflection coefficient,R, and the transmission
coefficient, T , in the standard manner. The quasi-classical tunneling time is then given by (1) with
P = |T |2.

The quasi-classical tunneling time can be expressed in dimensionless units as follows:

P = |T |2 =
∣∣∣∣ (2ρ)

(κ + ρ + iβ)

∣∣∣∣
2

, τqc = 1

π |T |2 = (κ + ρ)2 + β2

4πρ2 (26)
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Fig. 3. The quasi-classical tunneling time τqc (continuous-line curve) and the exact tunneling time τtun (broken-line
curve) as a function of υ1 for a δ-function potential with β = 1. Note that τqc is incorrect both quantitatively and
qualitatively. In part (b), τtun is shown alone so that its qualitative features are clearly seen.

In Figs. 2 and 3, we compare the exact tunneling time τtun and the quasi-classical tunneling time τqc.
In Fig. 2, we show how they depend on the dimensionless strength of the δ-function potential barrier.
Though they both have the same qualitative behaviour, they do not have the same value. The difference
is not alarming, even though it is noteworthy.

In Figs. 3a and 3b, we show τqc and τtun for a fixed strength of the barrier, but with the value of
υ1 ≡ 2mx2

1V1/�
2 increasing. Figures 3a and 3b show that the two are significantly different: not only
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does τqc have the wrong value, it also fails to reveal the correct qualitative trend.
We will discuss this further after we deal with the double-square-well case.

3. Square potential barrier

We next consider the full double-well potential shown explicitly in Fig. 1. The potential is given by

V (x) =




+∞, for x ≤ 0

V1, for 0 < x < x1

V2, for x1 < x < x2

0, for x2 < x < x3

∞, for x3 ≤ x

(27)

The Schrödinger equation is

− �
2

2m

d2ψk(x)

dx2 + V (x)ψk(x) = Ekψk(x) (28)

The eigenfunctions have the form

ψk(x) =



ψ I
k(x), for E < V1

ψ II
k (x), for V1 < E < V2

ψ III
k (x), for V2 < E

(29)

where

ψ I
k(x) =



A1 eq1x + B1 e−q1x, for 0 < x < x1

C1 eq2x + D1 e−q2x, for x1 < x < x2

E1 eikx + F1 e−ikx, for x2 < x < x3

0, elsewhere

(30)

ψ II
k (x) =



A2 eip1x + B2 e−ip1x, for 0 < x < x1

C2 eq2x + D2 e−q2x, for x1 < x < x2

E2 eikx + F2 e−ikx, for x2 < x < x3

0, elsewhere

(31)

and

ψ III
k (x) =



A3 eip1x + B3 e−ip1x, for 0 < x < x1

C3 eip2x + D3 e−ip2x, for x1 < x < x2

E3 eikx + F3 e−ikx, for x2 < x < x3

0, elsewhere

(32)

We have defined k2 = 2mE/�2, q2
i = 2m(Vi − E)/�2, and p2

i = 2m(E − Vi)/�
2.

The initial state is again given by

ψ0(x) ≡ ψ(x, t = 0) =
{√

2
x1

sin
(
πx
x1

)
, for 0 < x < x1

0, elsewhere
(33)
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Then, proceeding as before

ψ0(x) =
∑
Ek

Ck ψk(x)

with

Ck =< ψk|ψ0 >=



CI
k =< ψ I

k|ψ0 >, for E < V1

CII
k =< ψ II

k |ψ0 >, for V1 < E < V2

CIII
k =< ψ III

k |ψ0 >, for V2 < E

(34)

The initial state, expressed in terms of energy eigenfunctions (in dimensionless units), is

ψ0(η) =
∑
E<V1

CI
kψ

I
0(η, κ) +

∑
V1<E<V2

CII
k ψ

II
0 (η, κ) +

∑
E>V2

CIII
k ψ III

0 (η, κ) (35)

with

ψ I
0(η, κ) =




sinh(µ1η), for 0 < η < η1

sinh(µ1η1) cosh[µ2(η − η1)]
+µ1

µ2
cosh(µ1η1) sinh[µ2(η − η1)], for η1 < η < η2

sin[κ(η3−η)]
sin[κ(η3−η2)] (sinh(µ1η1) cosh[µ2(η2 − η1)]

+µ1
µ2

cosh(µ1η1) sinh[µ2(η2 − η1)]), for η2 < η < η3

0, elsewhere

(36)

ψ II
0 (η, κ) =




sin(ρ1η), for 0 < η < η1

sin(ρ1η1) cosh[µ2(η − η1)]
+ ρ1

µ2
cos(ρ1η1) sinh[µ2(η − η1)], for η1 < η < η2

sin[κ(η3−η)]
sin[κ(η3−η2)] (sin(ρ1η1) cosh[µ2(η2 − η1)]

+ ρ1
µ2

cos(ρ1η1) sinh[µ2(η2 − η1)]), for η2 < η < η3

0, elsewhere

(37)

and

ψ III
0 (η, κ) =




sin(ρ1η), for 0 < η < η1

sin(ρ1η1) cos[ρ2(η − η1)]
+ρ1

ρ2
cos(ρ1η1) sin[ρ2(η − η1)], for η1 < η < η2

sin[κ(η3−η)]
sin[κ(η3−η2)] (sin(ρ1η1) cos[ρ2(η2 − η1)]

+ρ1
ρ2

cos(ρ1η1) sin[ρ2(η2 − η1)]), for η2 < η < η3

0, elsewhere

(38)

Then the time-dependent wave function is given by

ψ(x, t) =
∑
E

Ck ψk(x) e−iEt/�

=
∑
E<V1

CI
k ψ I

k(x) e−iEt/� +
∑

V1<E<V2

CII
k ψ II

k (x) e−iEt/� +
∑
E>V2

CIII
k ψ III

k (x) e−iEt/� (39)
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Again, taking the limit (η3 − η2) → ∞ allows us to replace the sum by an integral; after a lengthy
calculation, ψ(x, t) in dimensionless form is

φ(η, τ ) =



φ1(η, τ ), for 0 < η < η1

φ2(η, τ ), for η1 < η < η2

φ3(η, τ ), for η2 < η < η3

0, elsewhere

(40)

φ(η, τ ) = 2
√

2

κ1∫
0

dκ
µ2

2 sinh(µ1η1)ψ
I
0(η, κ)

[
1 + T −2

1 (κ)
]−1

e−iκ2τ(
µ2

1 + π2
)

[µ2 sinh(µ1) cosh(µ2N) + µ1 cosh(µ1) sinh(µ2N)]2

+ 2
√

2

κ2∫
κ1

dκ
µ2

2 sin(ρ1η1)ψ
II
0 (η, κ)

[
1 + T −2

2 (κ)
]−1

e−iκ2τ(
µ2

1 + π2
)

[µ2 sin(ρ1) cosh(µ2N) + ρ1 cos(ρ1) sinh(µ2N)]2

+ 2
√

2
∫ ∞

κ2

dκ
ρ2

2 sin(ρ1η1)ψ
III
0 (η, κ)

[
1 + T −2

3 (κ)
]−1

e−iκ2τ(
µ2

1 + π2
)

[ρ2 sin(ρ1) cos(ρ2N) + ρ1 cos(ρ1) sin(ρ2N)]2 (41)

with

T1 = −κ

µ2

[
µ2 tanh(µ1η1) + µ1 tanh(µ2N)

µ2 tanh(µ1η1) tanh(µ2N) + µ1

]
(42)

T2 = −κ

µ2

[
µ2 tan(ρ1η1) + ρ1 tanh(µ2N)

µ2 tan(ρ1η1) tanh(µ2N) + ρ1

]
(43)

T3 = κ

ρ2

[
ρ2 tan(ρ1η1) + ρ1 tan(ρ2N)

ρ2 tan(ρ1η1) tan(ρ2N) − ρ1

]
(44)

where we have defined the following dimensionless quantities: φ = √
x1ψ , η = x/x1, ηi = xi/x1,

N = η2 − η1, κ = kx1, κi = x1
√

2mVi/�, µi =
√
κ2
i − κ2, ρi =

√
κ2 − κ2

i , τ = t/t0 = �t/(2mx2
1 ),

with t0 = 2mx2
1/�.

In Fig. 4, we compare the quasi-classical tunneling time, τqc, with the exact tunneling time, τtun. In
this figure, the energies are again given in units of �

2/(2mx2
1 ); i.e., υ1 ≡ 2mx2

1V1/�
2, υ2 ≡ 2mx2

1V2/�
2,

and ε ≡ 2mx2
1E/�2. The two differ by a factor of up to about ten. Even though τqc has the right qualitative

behaviour, it is as much as an order of magnitude too large.

4. Numerical methods

The numerical computation of the wave function is not trivial; we thus briefly describe the key
features of the methods that we used.

Equation (20) was evaluated for a series of τ values. The integrals in (20), (22), and (41) were
computed using Simpson’s rule. The integral over wave number was truncated at a sufficiently high
value to allow for convergence. Since the integrand contains terms of the form exp(−iκ2τ), these
terms oscillate rapidly in the time domain. To deal with the rapid oscillations, the value of κ used
to truncate the integral was in turn used to compute an appropriate time step required in employing
Simpson’s rule for the numerical integration, allowing the numerical routine to yeild accurate results
for even the most rapid oscillations in the integrand. Then the tunneling time, (19), was obtained in two
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Fig. 4. The quasi-classical tunneling time τqc (continuous-line curve) and the exact tunneling time τtun (broken-line
curve) for the double square well of Fig. 1. Note that τqc is a factor of up to about ten times too large. The tunneling
times are plotted for increasing υ1 but with υ2 − υ1 and < ε > − υ1 fixed. In this figure, υ2 − υ1 = 10 and
< ε > − υ1 = π2.

ways: splines and interpolation. The data points obtained from (20) were used to create a spline, which
could be integrated analytically. Since the tunneling time is a ratio of two integrals containing Pin(t),
it converges for sufficiently large τ . To confirm the value obtained by the spline method and also to
estimate an error for the tunneling time, we interpolated the data points from (20) with a function of
the form P ′(τ ) = [cos(aτ + b)+ 1] exp cτ + d. Inserting this function into (19), we were then able to
evaluate the tunneling time, (19), analytically. The tunneling times for the square potential barrier were
obtained in a similar fashion.

5. Discussion

Some of the results we have found are strongly counterintuitive, which is not necessarily surprising,
as this is quite common in quantum mechanics. Nevertheless, we report that we tested our results in
numerous ways to ensure they are correct. As just one example, we wrote two separate programs, one
for the δ-function cases, one for the double-square-well case. We compared them by letting V2 → V +

1
for the latter, and then rescaled, such that the range 0 < x < x2 for the latter coincided with the range
0 < x < x1 of the former. Taking λ = 0 for the δ-function case, and starting with the same initial wave
function for both cases, we found that both programs gave exactly the same time evolution of the initial
wave function. We performed several other tests to ensure that the results reported here are correct.

One of the more interesting features of the behaviour of the tunneling time, ttun, reported here is
that ttun increases monotonically with V1 for the double well. One might have expected that it would
decrease with V1. Similarly, the behaviour found in Fig. 3b is perhaps not what one might have expected
before carrying out the calculation.

There has been a great deal of discussion in the literature on resonant tunneling phenomenon. This
is primarily because the process can now be demonstrated experimentally [6]. As discussed in ref. 13,
when one has a double-well structure, and investigates tunneling behaviour in the system for various
potential strengths, one will find resonant conditions for tunneling to occur. This is most easily observed
in systems for which the width of the potential is the same on both sides of a barrier, or very close to
one another. We did not observe any resonances in the tunneling times out of our potentials, as in
our case we investigated tunneling to a semi-infinite second well. In this case, one does not expect
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resonant tunneling; one would expect the particle to tunnel through the barrier always, given enough
time. Resonant tunneling is an interesting phenomenon; however, it is beyond the scope of this paper.

6. Summary and outlook

That the two tunneling times can differ by an order of magnitude, and can give different qualitative
trends, raises a legitimate concern about the use of the quasi-classical formula. We stated at the beginning
of the paper that one could expect some difference between τqc and τtun; in the three simple examples
we have studied, we have seen that there is reason to question the limits of validity of the use of τqc.

We believe that further study of this issue is warranted. Will the quasi-classical approach work
reasonably if the potential is smooth, with no sharp discontinuities? Is the difference we have found
between τqc and τtun due to sharp discontinuities? Our view is that it is not, but we cannot be sure until
an investigation is carried out using a smooth potential, and perhaps also involving the well-known
WKB approximation (see, for example, ref. 8, pp. 81–82) for |T |2.

Given the results of our investigation, upon reflecting that many textbooks assign problems to the
student to calculate the tunneling time using the quasi-classical, WKB equation, it seems to us that this
question is an important one.

We have certainly shown that τqc is not correct in the simple cases we have examined. Indeed, this
is what we expected to find. Certainly it is much easier to use τqc than to calculate τtun exactly. But, if
the result for τqc is neither qualitatively nor quantitatively reliable, it is not appropriate.

We hope that this initial conceptual investigation will lead to further endeavours along these lines.
We have begun an inquiry using a smooth potential.
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